Chao, Li-Ming

I am interested in the hydrodynamics of swimming and flying animals. Using the computational fluid dynamics (CFD), I have investigated the flow around the pitching foil, self-propelling foil and multiple foils to show how swimming fish actively and/or passively controls the fluid.

Anisotropic Vicsek model

Gao, Z. & Couzin, I.D. (2022) Swarming transitions of self-propelled particles with anisotropic social interactions. In revision.

Prey and predators

Jolles, J., Sosna, M.M.G., Mazué, G.P.F., Twomey, C.R., Bak-Coleman, J., Rubenstein, D.I. & Couzin, I.D. (2022) Both prey and predator features predict the individual predation risk and survival of schooling prey. In revision.

Eduardo Sampaio

My interests involve a broad range of research areas including behavior, cognition, evolution, and sociality. For my PhD, I studied how decision-making processes in individual cephalopods are shaped by social contexts, including with heterospecifics. Multispecific groups provide complex interaction scenarios where the existence of distinct species-specific hunting strategies entails distinguishing among social information sources differing in morphology, behavior, and cognition. In Konstanz, I will continue working with collective hunting groups of octopus and fish and analyze how group coordination and decision-making is shaped by individuals with markedly distinct movement patterns that have diverged long ago in the evolutionary tree of life.My interests involve a broad range of research areas including behavior,

Lior Lebovich

During her PhD in computational neuroscience Lior studied the role of noise in decision-making, focusing on idiosyncratic choice biases and their neural basis.

At the Couzin group Lior will design field experiments and use advanced computational methods to study the effect of spatial constraints on individual and collective decision-making dynamics.

Mohammad Salahshour

From bacterial populations to human groups, evolution has produced a high level of organization. For this to happen, biological populations need to address different challenges. They need to solve strategic problems, such as collective action and coordination problems. They also often need to collectively acquire and process a vast amount of information to respond to environmental or societal challenges. I try to understand how biological populations successfully perform these tasks and how, from large-scale ecological patterns to social norms,

Maelan Tomasek

As a Biology Master’s student I study social cognition in social cichlids and the transmission of information within the social group in different species. As a vet, I’m also interested in animal health and its impact on behaviour, particularly in aquatic organisms.”